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Multi-View Stereo Problems

Depth map-based MVS algorithms estimate the reference view
depth maps using multiple RGB inputs (Reference + Source
views)
A consistent scene requires geometric consistency of depth
estimates across multiple views

Two broader approaches are undertaken to ensure geometric consis-
tency in estimated depth maps:

Repeated application of geometric constraints during the depth
estimation process → Traditional MVS Algorithms
Geometric constraints applied as a post-processing step →
Learning-based MVS Algorithms

GC-MVSNet is a learning-based algorithm with geometric constraints
applied during the learning process.

Learning-Based MVS Algorithms

A learning-based MVS method:

Extracts multi-level features using CNNs
Creates a matching 3D cost volume using features
Regularizes cost volume using 3D-CNN
Filters geometrically consistent points to generate 3D point-cloud

They only use Geometric Constraints as a post-processing step for fil-
tering multi-view consistent points. This leads to:

Limited geometric cues during the learning process
Requiring more training iterations to learn to reason about
geometry

Hypothesis

GC-MVSNet:

Explicitly models cross-view geometric constraints during learning
Penalizes geometrically inconsistent estimates during learning

With such explicit geometric constraint modeling, GC-MVSNet
should:

Develop a better understanding of multi-view geometry →
Improved quantitative results
Learn quickly to reason about scene geometry → Require less
training iterations

Forward-Backward-Reprojection

Other Modifications

Two additional modifications were to stabilize the model’s performance.

Keept the feature-extraction network as a Feature Pyramid
Network, replaced the regular conv-layers with deformable
conv-layers
Replaced BatchNorm-layers with GroupNorm-layers as BatchNorm
is not well suited for small batch-sizes

Reconstructed Scene Point Clouds

Method

Geometric-Consistency (GC) Module:

Applied at the end of each stage to check cross-view consistency of the reference view depth maps
Generates penalty for geometrically inconsistent estimates for each stage
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Pixel Displacement
Error (PDE)

Relative Depth
Difference (RDD)

PDE > Dpixel RDD > Ddepth

PDE Inconsistent Pixels RDD Inconsistent Pixels

Logical-OR 

Inconsistent pixels: 1
All other pixels: 0

Geometric Inconsistency Mask sum

For M source views

Geometric Penalty

Initialize Mask-Sum → 0
For each Src. depth map:

1. forward-backward-reprojection to get PDE and RDD
PDE ← ||P0 − P ′′0 ||2
RDD ← 1/D0||D′′P ′′0 −D0||1

2. Select geometrically inconsistent pixels
PDEmask > Dpixel

RDDmask > Ddepth

3. Combine inconsistent pixels from both masks
Logical-OR (PDEmask, RDDmask)

4. Current-Mask ← Assign penalty to each pixel
Inconsistent pixels → 1
All other pixels → 0

5. Add Current-Mask to initial Mask-Sum

Geometric penalty (ξp)← average Mask-Sum
Apply reference view binary mask to generate final ξp

Initial ξp Final ξpRef. view binary mask

GC-MVSNet Architecture
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Quantitative Results

Our method achieves state-of-the-art results on two datasets: DTU and
BlendedMVS

DTU Dataset

BlendedMVS Dataset

GC: A Plug-in Module

The GC module is designed as a plug-in module

Plug into any depth map-based MVS method
Retraining the network with GC module provides:

Improved quantitative results
Requires less training iterations to achieve optimal performance

We demonstrate this on two different methods:
CasMVSNet and TransMVSNet

Methods Loss Other GC Overall↓ Epoch

CasMVSNet [2]
L1 × × 0.355 16
L1 X × 0.357 16
L1 × X 0.335 11

TransMVSNet [1]
FL × × 0.305 16
FL X × 0.322 16
FL × X 0.303 8

Table 1. GC-module as a plug-in in TransMVSNet and CasMVSNet
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